Q-ADMISSIBILITY OF CERTAIN NONSOLVABLE GROUPS[†]

BY

ELIAS ABBOUD

Department of Mathematics, Technion — Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

A finite group G is called Q-admissible if there exists a finite dimensional central division algebra over Q, containing a maximal subfield which is a Galois extension of Q with Galois group isomorphic to G. It is proved that S_5^- , one of the two nontrivial central extensions of S_5 by Z/2Z, is Q-admissible. As a consequence of that result and previous results of Sonn and Stern, every finite Sylow-metacyclic group, having A_5 as a composition factor, is Q-admissible.

Introduction

Let Q be the field of rational numbers. Schacher gave in his paper [2] the following definition:

A finite group G is called Q-admissible \Leftrightarrow There exists a finite dimensional central division algebra over Q containing a maximal subfield which is a Galois extension of Q with Galois group $\simeq G$.

We may replace Q by any field k.

Let S_5^- be the central extension of C_2 by S_5 which contains D'_{16} as a 2-sylow subgroup, where

$$D'_{16} = \langle x, yx^2 = y^8 = 1, x^{-1}yx = y^3 \rangle.$$

In this paper we prove the following theorem: S_5^- is Q-admissible.

Received June 3, 1985 and in revised form May 7, 1987

[†] This paper is part of a M.Sc. thesis written at the Technion — Israel Institute of Technology, under the supervision of Professor J. Sonn, whom the author wishes to thank for his valuable guidance.

Preliminaries

Let p denote a prime divisor of the field k nd v a prime integer dividing |G|. Schacher in [2] characteriszed k-admissibility in terms of local Galois groups:

CRITERION. A finite group G is k-admissible \Leftrightarrow There exists a Galois extension $L \mid k$ such that $G(L/k) \simeq G$ and for every prime $v \mid^{|G|}$, $G(L_p \mid k_p)$ contains a ν -sylow subgroup for two different prime divisors p of k.

Thus, we first seek a method for realizing groups over fields. This leads us to embedding problems.

Sonn has written a brief introduction on embedding problems and some of their properties. We refer the reader to [4] and [5] at least for reading the definitions of the local and global embedding problems.

Consequences. On the basis of the theorems and lemmas found in [4] and [5] we can prove the following two corollaries:

COROLLARY 1. Let there be given the embedding problem:

$$G(\bar{Q}_{p} \mid Q_{p})$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \rightarrow C_{2} \rightarrow E_{p} \stackrel{j_{p}}{\rightarrow} G(K_{p} \mid Q_{p}) \rightarrow 1$$

where Q_p is the field of p-adic numbers, $p \neq 5$, and \bar{Q}_p is its separable closure. If $K_p = Q_p(\pi^{1/5})Q_p(\theta)$, where π is a prime element of Q_p , θ a primitive 5th root of unity, then the embedding problem is solvable.

PROOF. $K_p \mid Q_p$ is a Galois extension. If $p \equiv 1(5)$, then $G(K_p \mid Q_p) \simeq C_5$ [6, p. 48]. By [4, Lemma 3] the embedding problem (*) has a solution. Assume $p \not\equiv 1(5)$, then $p^4 \equiv 1(5)$ and the order of p in Z_5 is 2 or 4. Thus, $G(K_p \mid Q_p) \simeq C_5 \cdot C_4$ or $C_5 \cdot C_2$ ($A \cdot H$ means semi-direct product). Let H be a subgroup of order 5 of E_p . Obviously, H is normal in E_p and $H \cap C_2 = \{1\}$.

Now, the embedding problem:

$$1 \rightarrow C_2 \rightarrow E_p/H \rightarrow G(Q_p(\theta)/Q_p) \rightarrow 1$$

is solvable by [4, Lemma 3].

Let L'_p be a solution field, then $[L'_p:Q_p]$ is a power of 2. Therefore $L'_p \cap K_p = Q_p(\theta)$ so by [5, Lemma 1] the embedding problem (*) has a solution.

COROLLARY 2. The embedding problem (*) is also solvable if $K_p = F_1 F_2$

 $(K_p \text{ is the compositum of } F_1\&F_2)$, where $F_1 \mid Q_p$ is totally and tamely ramified extension of degree 3, $F_2 \mid Q_p$ is unramified extension of degree 2 and F_1F_2 contains the 3rd root of unity.

PROOF. In this case, $G(K_p \mid Q_p) \simeq C_3 \cdot C_2$ and the preceding arguments yield the result.

Realizing S_5 over Q and Laguerre polynomials

Turning back to S_5^- , which is a central extension of C_2 by S_5 , we have the following exact row:

$$1 \rightarrow C_2 \rightarrow S_5^- \rightarrow S_5 \rightarrow 1$$

First we prove that S_5 is realizable over Q and then go on to verify that the following embedding problem is solvable:

$$G(Q \mid Q)$$

$$\downarrow$$

$$1 \to C_2 \to S_5^- \to G(K \mid Q) \simeq S_5 \to 1$$

 $(\bar{Q} \text{ is the separable closure of } Q)$. By [4, Lemma 2] it is enough to investigate the local embedding problems at every prime of Q except one.

By Schacher's criterion, the Q-admissibility of S_5^- is not yet accomplished. Thus in what follows we have to make sure that the other conditions in the criterion are satisfied.

Following Sonn [4] in proving the Q-admissibility of SL(2, 5) we realize S_5 over Q, using Laguerre polynomials. For λ , μ integers and n=5 they are defined as follows:

$$F_5(\lambda, \mu, x) = x^5 - \frac{K_5}{1!}x^4 + \frac{K_4K_5}{2!}x^3 - \frac{K_3K_4K_5}{3!}x^2 + \frac{K_2K_3K_4K_5}{4!}x - \frac{K_1K_2K_3K_4K_5}{5!}$$

where $K_m = m(\lambda + \mu m), m = 1, 2, ..., 5$.

The discriminant of this polynomial is given by

$$D_5 = \mu^{10} \cdot 2^{10} \cdot 3^3 \cdot 5^5 (\lambda + 2\mu)(\lambda + 3\mu)^2 (\lambda + 4\mu)^3 (\lambda + 5\mu)^4.$$

Now, we describe a "Searching method" looking for pairs (λ, μ) that answer the following demands:

(a) The splitting field of $F_5(\lambda, \mu, x)$ has S_5 as a Galois group over Q.

- (b) The local embedding problems in all primes of Q, except one at most, are solvable.
 - (c) The local conditions in the criterion of Q-admissibility are satisfied.

Let S be the set of pairs (λ, μ) satisfying the following conditions: (1)-(7). The search of (λ, μ) satisfying (a), (b), (c) will be carried out inside S (we do not assert that (1)-(7) imply (a)-(c)).

- (1) λ , μ integers.
- (2) $\lambda + 5\mu = 2a$, a is prime.
- (3) $\lambda + 4\mu = 5pq$, $p, q \equiv 3(8) (p, q \text{ primes})$.
- (4) $\lambda/\mu > -2$, μ is prime.
- (5) $\lambda + 3\mu = 3^5 2^j b$, $s \ge 1, j \ge 4, b \text{ (prime)} = 1(3) \text{ or } b = 1.$
- (6) $\lambda + 2\mu = c$, c (prime) = -1(4).
- $(7) \sqrt{D_5} \in Q_5.$

The rationale for this is as follows: The prime 2, which appears in (2), is connected with the local embedding problem at p = 2. If we choose "a" to be prime then the polynomial $F_5(\lambda, \mu, x)$ will be Eisentein and the embedding problem is solvable at p = a.

In (3) we demand p, $q \equiv 3(8)$, assuring the existence of the local conditions at two places (we want the dehedral group of order 8 to be a local Galois at two primes).

By (4), we assure that all roots of the polynomial are real [4] and so its splitting field is totally real. The condition " μ is prime" gives no additional primes in the discriminant.

In (5) we want $3 \cdot 2^4 \mid \lambda + 3\mu$, this is helpful for solving the embedding problems at p = 2, 3. In the quotient $(\lambda + 3\mu)/48$ it is preferable to appear powers of 2, 3. We ask $b \equiv 1(3)$ since then it is easy to solve the local embedding problem at p = b. Concerning (6), the condition $c \equiv -1(4)$ is useful whenever the polynomial $F_5(\lambda, \mu, x)$ factors, mod c, into the form

$$F_5(\lambda, \mu, x) \equiv x^2(x - \alpha)(x^2 + \beta x + \gamma) \pmod{c}$$

so that the local Galois groups, at p = c, is $C_2 \times C_2$ and the embedding problem is solvable.

Finally, we demand $\sqrt{D_5} \in Q_5$, so that $G(K_p \mid Q_p)$ is a subgroup of A_5 and the local embedding problem is solvable at p = 5.

Now, we simplify the equations that appear in (1)-(7). From (2) and (3) we get:

$$\lambda = 25pq - 8a$$
, $\mu = 2a - 5pq$

so that

$$\lambda + 3\mu = 10pq - 2a$$
, $\lambda + 2\mu = 15pq - 4a$.

In (5) we want $48 | \lambda + 3\mu \text{ or } 10pq - 2a = 48k \text{ so that}$

$$a = 5pq - 24k$$
 (k integer).

Thus $\lambda/\mu > -2$ (condition (4)) implies

$$\frac{5pq}{96} < k < \frac{5pq}{48}.$$

These previous equations of λ , μ with the last inequality of k assure the validity of conditions (2), (3), (4) (except for " μ is prime") and $48 \mid \lambda + 3\mu$. The condition $D_5 \in Q^{*2}$ is equivalent to [6, p. 79]

$$3pq(\lambda + 2\mu) \equiv 1, 4(5).$$

For solving the embedding problem at p=2 we avoid the case when $(K_1K_2K_3K_4K_5)/5!$, is divisible by 2^{5+3t} (t positive integer). In addition, if everything goes well, for solving the local embedding problem at p=c it remains to check whether or not

$$F_5(\lambda, \mu, x) \equiv x^2(x - \alpha)(x^2 + \beta x + \gamma) \pmod{c}$$
.

Applying this method for p, q = 11, 59, one gets $34 \le k \le 67$. The pairs (a, μ) for which a and μ are primes are: (2309, 1373), (2237, 1229), (2213, 1181), (1973, 701), (1949, 653), (1887, 503), (1709, 173), (1637, 29).

But only two have all the properties (1)-(7), namely: (2213, 1181) and (1637, 29).

Thus the pairs (λ, μ) in question are: (1479, 1181) and (3129, 29).

Thus we have got two pairs (λ, μ) and thus two Laguerre polynomials that may solve the Q-admissibility of S_5^- , but only one pair is proved to solve it.

We introduce here the full solution considering the pair $\lambda = 3129$, $\mu = 29$. The polynomial and discriminant are, respectively,

$$f(x) = F_5(3129, 29, x)$$

$$= x^5 - 2 \cdot 5 \cdot 1637x^4 + 2^2 \cdot 5^2 \cdot 11 \cdot 59 \cdot 1637x^3$$

$$- 2^6 \cdot 3 \cdot 5^2 \cdot 11 \cdot 59 \cdot 67 \cdot 1637x^2$$

$$+ 2^5 \cdot 3 \cdot 5^2 \cdot 11 \cdot 59 \cdot 67 \cdot 1637 \cdot 3187x$$

$$- 2^6 \cdot 3 \cdot 5 \cdot 11 \cdot 59 \cdot 67 \cdot 1637 \cdot 1579 \cdot 3187,$$

$$D = D_5 = 2^{22} \cdot 3^5 \cdot 5^8 \cdot 11^3 \cdot 59^3 \cdot 67^2 \cdot 29^{10} \cdot 1637^4 \cdot 3187.$$

THEOREM. The group S_5^- is Q-admissible.

PROOF. Let K be the splitting field of f(x) over Q.

We will see later that the local degrees of $K \mid Q$ at the primes 67, 11, 1637 are divisible by 3, 5, 8. Since $G(K \mid Q)$ is a subgroup of S_5 it follows that $G(K \mid Q) \simeq S_5$. Consider the following embedding problem:

$$G(\bar{Q} \mid Q)$$

$$\downarrow \text{ res}$$

$$1 \to C_2 \to S_5^- \xrightarrow{j} G(K \mid Q) \simeq S_5 \to 1$$

Since K is totally real, $K_x = Q_x = R$ and the embedding problem is trivially solvable at $p = \infty$. At p which is unramified $(p \nmid D)$ the local embedding is solvable by [4, Lemma 3]. It remains to investigate the prime divisors of D: 2, 3, 5, 11, 59, 67, 29, 1637, 3187. By [4, Lemma 2] we may omit one of them: $p = \mu = 29$.

p=1637: $f(x) \in Q_p[x]$ is Eisenstein. If ω is a root of f(x), then $Q_p(\omega)/Q_p$ is totally and tamely ramified extension of degree 5 [6, 3-3-1, p. 86]. Hence $Q_p(\omega) = Q_p(\pi^{1/5})$ where π is a prime element of Q_p [6, 3-4-3, p. 89]. Let θ be a primitive 5th root of unity, then $Q_p(\theta)/Q_p$ is unramified extension of degree 4 [6, 3-2-12, p. 85]. Therefore $K_p = Q_p(\omega)Q_p(\theta)$ and the local Galois group is: $G(K_p \mid Q_p) \simeq C_5 \cdot C_4$. By Corollary 1 the local embedding problem has a solution.

p=67: $f(x) \equiv x^3(x^2-22x+3) \pmod{67}$, where $x^2-22x+3$ is irreducible over Z_{67} . By Hensel's Lemma [6, 2-2-1, p. 45] f(x)=a(x)b(x) over the ring of integers of Q_p , $\bar{a}(x)=x^3$, $\bar{b}(x)=x^2-22x+3$ over the residue class ield, Z_{67} , of Q_{67} .

Now, the splitting field F_1 of b(x) is unramifield Galois extension of degree 2

[6, 3-2-6, p. 82]. By Newton's polygon there are three roots, with ord = $\frac{1}{3}$, of a(x) [6, 3-1-1, p. 74].

If $a(\omega) = 0$ then $Q_p(\omega)/Q_p$ is totally and tamely ramified of degree 3, so $Q_p(\omega) = Q_p(\pi^{1/3})$. but Q_p contains the third root of unity since $67 \equiv 1 \pmod{3}$ [6, p. 48].

Thus $Q_p(\omega)/Q_p$ is Galois extension of degree 3, $K_p = Q_p(\omega)F_1$ and $G(K_p/Q_p) \simeq C_3 \times C_2$ (direct product).

By Corollary 2 there exists a solution.

$$p = 2$$
: Define $f_1(y) = 2^{-5}f(2y)$, hence

$$f_1(y) = y^5 - a_1 y^4 + a_2 y^3 - 2^3 a_3 y^2 + 2a_4 y - 2a_5,$$
 $(a_i, 2) = 1$

SO

$$f_1(y) \equiv y^3(y^2 - y + 1) \pmod{2}$$
.

By Hensel's lemma $f_1(y) = a(y)b(y)$, $\bar{a}(y) = y^3$, $\bar{b}(y) = y^2 - y + 1$. Newton's polygon yields 3 roots of a(y) with ord $= \frac{1}{3}$. Let ω be one of them, then $Q_p(\omega)/Q_p$ is totally and tamely ramified extension of degree 3, so $Q_p(\omega) = Q_p(\pi^{1/3})$. Besides, the splitting field of b(y), which is unramified extension, equals $Q_p(\theta)$ where θ is a primitive 3rd root of unity [6, 6-5-5, p. 248].

Consequently, $K_p = Q_p(\omega)Q_p(\theta)$ and $G(K_p \mid Q_p) \simeq C_3 \cdot C_2$.

By Corollary 2 the local embedding problem is solvable.

p = 3: $f(x) \equiv x^3(x^2 - 2x + 2) \pmod{3}$. By Hensel's lemma f(x) = a(x)b(x), $\bar{a} = x^3$, $\bar{b} = x^2 - 2x + 2$.

The splitting field of b(x) $L_p \mid Q_p$ is unramified of degree 2. The extension $Q_p(\sqrt{D})/Q_p$ is totally ramified of degree 2 [6, 3-3-1, p. 86]. Thus 4 divides the order of the group $G(K_p/Q_p)$. By Newton's polygon a(x) has 3 roots of ord $= \frac{1}{3}$. Let $a(\omega) = 0$ then $Q_p(\omega) \mid Q_p$ is totally and tamely ramified of degree 3. Now, the same argument as in [5, $p \cdot 3$] yields that $G(K_p \mid Q_p) \simeq S_3 \times C_2$ and reduces the case to solving the following embedding problem,

$$1 \rightarrow C_2 \rightarrow Q_8 \rightarrow C_2 \times C_2 \rightarrow 1$$

where Q_8 is the quaternion group of order 8, $Q_8 = \langle x, y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$. Since $[Q_p^*: Q_p^{*2}] = 4$ [6, 6-5-1, p. 246], it follows that there is a unique Galois extension $K_p' \mid Q_p$ with Galois group $C_2 \times C_2$ (see McCarthy, Algebraic Extensions of Fields, p. 50). In addition, the Galois group of the maximal 2-extension is isomorphic to the pro-2-group generated by x, y with

defining relation $x^{-1}yx = y^3$ [3, p. 34]. But $3 \equiv -1(4)$, so that Q_8 is a quotient group of that of the maximal 2-extension and by Galois theory Q_8 is realizable over Q_p (field of p-adic integers). Let L_p/Q_p be an extension with Galois group Q_8 , then $L_p \supseteq K'_p$. Now, since every automorphism of $C_2 \times C_2$ lifts to an automorphism of Q_8 , the embedding problem is solvable (see also [5]).

p = 5: $f(x) \in Q_p[x]$ is Eisenstein and the order of $G(K_p \mid Q_p)$ is divisible by 5. Moreover,

$$Q_p(\sqrt{D}) = Q_p(\sqrt{3 \cdot 11 \cdot 59 \cdot 3187}), 3 \cdot 11 \cdot 59 \cdot 3187 \equiv 4 \pmod{5},$$

so that $\sqrt{D} \in Q_p$ [4, p. 79]. As a result, $G(K_p \mid Q_p)$ can be embedded in A_5 . But A_5 does not contain subgroups of order 15, 20, 30 thus $|G(K_p \mid Q_p)|$ is equal to 5 or 10. If $|G(K_p \mid Q_p)| = 5$, then by [4, Lemma 3] the embedding problem is solvable, otherwise $|G(K_p \mid Q_p)| = 10$ and $G(K_p \mid Q_p) \simeq C_5 \cdot C_2$.

By [5, Lemma 1] it suffices to prove that the following embedding problem is solvable:

$$1 \to C_2 \to E_p/H \xrightarrow{j} G(F'/Q_p) \to 1$$

where $[F': Q_p] = 2$. If E_p/H isomorphic to $C_2 \times C_2$ then the embedding problem $1 \to C_2 \to C_2 \times C_2 \to C_2 \to 1$ is trivially solvable, so assume $E_p/H \simeq C_4$.

Now Q_p contains the 4th root of unity, furthermore, F'/Q_p is either unramified or totally and tamely ramified. By [4, Lemma 3], in both cases, the embedding problem is solvable.

p=3187: $f(x) \equiv x^2(x-462)$ ($x^2+27x-806$) (mod 3187), $x^2+27x-806$ is irreducible over Z_p . By Hensel's lemma it follows that $f(x)=a(x)(x-\alpha)$ (b(x)) over the ring of integers of Q_p and $\bar{a}=x^2$, $\bar{b}=x^2+27x-806$ over Z_p . By Newton's polygon a(x) has two roots of ord $=\frac{1}{2}$, thus its splitting field is totally and tamely ramified extension of degree 2 and that of b(x) is unramified of degree 2 over Q_p . Hence, $G(K_p \mid Q_p) \simeq C_2 \times C_2$.

The local embedding problem is

$$1 \to C_2 \to Q_8 \to C_2 \times C_2 \to 1$$

 $(Q_8$ is the group of quaternions of order 8).

 Q_8 is realizable over Q_p , since it is a quotient group of $G(Q_p(2)/Q_p)$ — the Galois group of the maximal 2-extension — which is isomorphic to the pro-2-group on 2 generators x, y with the defining relation $x^{-1}yx = y^{3187}$ [3, II-34].

Now $3187 \equiv -1 \pmod{4}$ and the same argument as in p = 3 yields that the embedding problem is solvable.

p=11, 59: $f(x) \equiv x^4(x-a) \pmod{p}$. By Hensel's lemma, $f(x)=a(x)(x-\alpha)$ where $\bar{a}(x)=x^4$. By Newton's polygon the 4 roots, ω , of a(x) have $v(\omega)=\operatorname{ord}_{\omega}=\frac{1}{4}$.

 $v(Q_p(\omega))$ is a discrete subgroup of (R, +) (real numbers under addition) so $v(Q_p(\omega)) = \alpha Z$ for some $\alpha \in R^+$. Since $\operatorname{ord}_{\omega} = \frac{1}{4}$ it follows that $\alpha < \frac{1}{4}$, $e = (\alpha Z : Z) \ge 4$. On the other hand $e \le 4$. Therefore e = 4 and $Q_p(\omega)/Q_p$ is totally and tamely ramified extension of degree 4. By [6, 3-4-3, p. 89] $E = Q_p(\pi^{1/4})$ where π is a prime element of Q_p . Let θ be a primitive 4th root of unity, then $Q_p(\theta) \mid Q_p$ is unramified of degree 2 [6, 3-2-12, p. 85]. So $K_p = Q_p(\omega)Q_p(\theta)$, $G(K_p \mid Q_p) \simeq C_4 \cdot C_2$. But $C_4 \cdot C_2 \simeq D_8$ hence $G(K_p \mid Q_p) \simeq D_8$ (dihedral group of order 8).

Consequently, the local embedding problem at p = 11, 59 is

$$1 \rightarrow C_2 \rightarrow D'_{16} \rightarrow D_8 \rightarrow 1$$

 $(C_2 = \text{center } D_{16}')$. Let $G = G(Q_p(2) \mid Q_p)$ then G is generated by σ , τ with $\sigma^{-1}\tau\sigma = \tau^p$ [3, II-34]. One can readily verify that if the following embedding problem is solvable,

(*)
$$G \downarrow res$$

$$1 \rightarrow C_2 \rightarrow D'_{16} \xrightarrow{j} D_8 \rightarrow 1$$

then

$$G(\bar{Q}_p \mid Q_p)$$

$$\downarrow$$

$$1 \rightarrow C_2 \rightarrow D'_{16} \rightarrow D_8 \rightarrow 1$$

is solvable also.

Let us recall that

$$D_8 = \langle x, y \mid x^2 = y^4 = 1, xyx^{-1} = y^{-1} \rangle$$

$$D'_{16} = \langle u, v \mid u^2 = v^8 = 1, uvu^{-1} = v^3 \rangle.$$

Concerning (*), denote res $\sigma = x_1$, res $\tau = y_1$. Clearly x_1 , y_1 generate D_8 and $x_1^{-1}y_1x_1 = y_1^{\rho}$.

If y_1 is of order 2 then $p \equiv 3(8)$ implies $p \equiv 1(2)$ and $x_1^{-1}y_1x_1 = y_1$ so that D_8

is abelian. Thus y_1 is of order 4, $x_1^{-1}y_1x_1 = y_1^{-1}$. In addition, $x_1 \notin \langle y_1 \rangle$ so that the order of x_1 is 2. As a result,

$$D_8 = \langle x_1, y_1 | x_1^2 = y_1^4 = 1, x_1^{-1}y_1x_1 = y_1^{-1} \rangle.$$

Now j is epimorphism, choose $v_1 = j^{-1}(y_1)$, $u_1 = j^{-1}(x_1)$. We will see that u_1 , v_1 are generators of D'_{16} and satisfy the relation $u^{-1}v_1u_1 = u_1^p$, so that a solution of (*) can be selected by sending the pair (σ, τ) to (u_1, v_1) , getting a commutative diagram.

Indeed, if $v_1 = u$ then $v_1^2 = e$, $y_1^2 = j(v_1^2) = e$ which is impossible. Similarly, if $v_1 = uv^j$ then $v_1^2 = (uv^j)^2 = v^{4j}$, but $c_2 = \{e_1v^4\}$ is the center of D'_{16} so that $v_1^2 \in \{e, v^4\} = \ker j$ implies $y_1^2 = j(v_1^2) = e$, a contradiction. Thus $v_1 = v^j$. If j = 2k then $v_1^2 = v^{4k} \in \ker j$, so $v_1 = v^j$ where j is odd. Now u_1 must be of the form uv^k and one can easily prove that v^j , uv^k (j is odd) form two generators of D'_{16} . Moreover,

$$u_1^{-1}v_1u_1 = v^{-k}u^{-1}v^juv^k = v^{-k}v^{3j}v^k = (v^j)^3 = v_1^3.$$

Finally the order of v_1 is 8 and for $p \equiv 3(8)$, $v_1^3 = v_1^p$ so that $u_1^{-1}v_1u_1 = v_1^p$.

We have demonstrated that S_5^- is realizable over Q. Let L be a solution field: $G(L \mid Q) \simeq S_5^-$. In order to prove its Q-admissibility we have to show, by the criterion, that for every $v = 2, 3, 5, G(L_p/Q_p)$ contains a v-sylow subgroup for two prime divisors p of Q. By virtue of Chebotarev's density theorem this condition is satisfied for cyclic sylow subgroups, i.e. for v = 3, 5. The 2-sylow subgroup is D'_{16} , we have seen that D_8 is local Galois group, $G(K_p \mid Q_p)$, at two places: p = 11, 59 (K is the splitting filed of f(x)). Now L_p is a local solution field of

$$1 \to C_2 \to S_5^- \xrightarrow{j} G(K \mid Q) \simeq S_5 \to 1$$

and since the extension of groups

$$1 \rightarrow C_2 \rightarrow D'_{16} \rightarrow D_8 \rightarrow 1$$

does not split, the local solution is surjective.

Consequently, $G(L_p \mid Q_p) \simeq D'_{16}$ at two primes: p = 11, 59.

Finally, we have:

COROLLARY. Every finite Sylow metacyclic group, G, which has A_5 as a composition factor is Q-admissible.

PROOF. By a hint of Sonn in [5], S_5^- is sharply Q-admissible. By [1, Th.1.2] G is of the form $A \cdot N$, where A is one of: A_5 , S_5 , S_5^+ , S_5^- , SL(2, 5).

Now, A_5 and SL(2, 5) are strong Q-admissible [1], in particular they are sharply Q-admissible. In addition, S_5^+ and S_5^- are sharply Q-admissible and S_5 is a homomorphic image of S_5^- (or S_5^+) so it has the same type of Q-admissibility. by [1, Th.2.1] with the version of sharply Q-admissibility, it follows that G is such a group, in particular G is Q-admissible.

REFERENCES

- 1. D. Chillag and J. Sonn, Sylow-metacyclic groups and Q-admissibility, Isr. J. Math. 40 (1981), 307-323.
 - 2. M. Schachter, Subfields of division rings, I, J. Algebra 9 (1968), 451-477.
- 3. J. P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Spring-Verlag, Berlin. 1965.
 - 4. J. Sonn, SL(2, 5) and Frobenius Galois groups over Q, Can. J. Math. 32 (1980), 281-293.
- 5. L. Stern, Q-Admissibility of Sylow-metacyclic groups having S_5^+ , as quotient group, preprint.
 - 6. E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963.